Sylvester-Gallai Theorems for Complex Numbers and Quaternions

نویسندگان

  • Noam D. Elkies
  • Lourens M. Pretorius
  • Conrad Johann Swanepoel
چکیده

A Sylvester-Gallai (SG) configuration is a finite set S of points such that the line through any two points in S contains a third point of S. According to the Sylvester-Gallai Theorem, an SG configuration in real projective space must be collinear. A problem of Serre (1966) asks whether an SG configuration in a complex projective space must be coplanar. This was proved by Kelly (1986) using a deep inequality of Hirzebruch. We give an elementary proof of this result, and then extend it to show that an SG configuration in projective space over the quaternions must be contained in a three-dimensional flat.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Elementary Incidence Theorems for Complex Numbers and Quaternions

We present some elementary ideas to prove the following Sylvester-Gallai type theorems involving incidences between points and lines in the planes over the complex numbers and quaternions. (1) Let A and B be finite sets of at least two complex numbers each. Then there exists a line l in the complex affine plane such that |(A×B) ∩ l| = 2. (2) Let S be a finite noncollinear set of points in the c...

متن کامل

The Sylvester-Gallai theorem, colourings and algebra

Our point of departure is the following simple common generalisation of the Sylvester-Gallai theorem and the Motzkin-Rabin theorem: Let S be a finite set of points in the plane, with each point coloured red or blue or with both colours. Suppose that for any two distinct points A, B ∈ S sharing a colour there is a third point C ∈ S, of the other colour, collinear with A and B. Then all the point...

متن کامل

Sylvester-Gallai type theorems for approximate collinearity

We study questions in incidence geometry where the precise position of points is ‘blurry’ (e.g. due to noise, inaccuracy or error). Thus lines are replaced by narrow tubes, and more generally affine subspaces are replaced by their small neighborhood. We show that the presence of a sufficiently large number of approximately collinear triples in a set of points in C implies that the points are cl...

متن کامل

Fractional Sylvester-Gallai Theorems∗

We prove fractional analogs of the classical Sylvester-Gallai theorem. Our theorems translate local information about collinear triples in a set of points into global bounds on the dimension of the set. Specifically, we show that if for every points v in a finite set V ⊂ C, there are at least δ|V | other points u ∈ V for which the line through v, u contains a third point in V , then V resides i...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Discrete & Computational Geometry

دوره 35  شماره 

صفحات  -

تاریخ انتشار 2006